登上3月20日Science封面的3D打印「黑科技」到底是怎么回事?

2020-05-14 23:52:52
#其他

硅谷公司Carbon3D最近公布了一种全新的3D打印技术,能在液体中直接、持续而迅速地打印,颠覆了过去几十年来逐层堆叠的3D打印方式,速度提高了25~100倍,并能打印许多前所未有的几何形状。


这种新技术称为 CLIP(Continuous Liquid Interface Production),登上了3月20日Science杂志封面。


▲Science杂志封面


Carbon3D公司成立于2013年,创始人都来自美国北卡罗来纳大学,CEO是教堂山分校的化学工程教授Joseph M. DeSimone,CTO是Alex Ermoshkin,还有同样也是化学工程教授的Edward T. Samulski。这家公司目前从红杉资本获得了4000万美元的投资。DeSimone还在3月16日的TED上演讲,介绍这项新技术。


目前的3D打印存在很多问题,比如速度太慢,表面粗糙。这是由于,普通的3D打印实际上是「2D打印」,一般使用液态树脂逐层堆叠,也就是说,打印好一层后,等待它固化,再进行下一层打印,然后层间黏合在一起。每层的边缘之间往往不能完全光滑过度,因此整体看起来较为粗糙。


这两个问题在Carbon3D开发的CLIP技术面前迎刃而解。 CLIP不仅速度提高了几十倍,并且表面光滑细腻。那么,CLIP技术的原理是什么呢?


CLIP的原理与光固化技术很相似,利用的是光敏树脂在一定波长紫外线作用下会产生聚合反应、从而固化的性质。但它还利用了另一个性质:氧气会抑制光敏树脂的固化。二者的平衡就是CLIP技术成功的关键。


秘诀就在于CLIP打印机的水槽底部(如下图)。水槽底部有一个窗口,其特殊之处在于,既能透过氧气,又能透过紫外线,因此称为「透氧窗口」(Oxygen Permeable Window)。水槽中装有液态光敏树脂,水槽下方有一个紫外线投射仪。氧气会抑制光敏树脂的固化过程,因此,水槽底部的液态树脂由于接触氧气而成为固化的「盲区」(dead zone),始终保持着液态,形成一层液态薄膜(约2~3个红细胞厚度)。这层薄膜不能透过氧气,但能透过紫外线,因此上层处于低氧状态的液态树脂就可以在紫外线的作用下固化。这样,就不会有固化的树脂黏在底板上。随着打印平台往上升,更多低氧状态的树脂被吸到底部,打印过程可以持续而迅速的进行,就像从液体中“生长”出来一样,而不需要像传统的方法那样分层固化。


▲CLIP打印机示意图


由于打印速度加快了,固化过程变得连续,因此表面非常光滑。


▲放大130倍的电子显微镜照片。左边是采用CLIP打印的表面,右边是普通3D打印的表面。


Carbon3D的工程师还声称,CLIP技术可以打印非常精细的物品,精度小于20微米,与丙烯酸纤维或者一张纸的1/4厚度相当。这种技术为扩展3D打印适用的材料范围提供了蓝图,比如合成橡胶、硅氧树脂、尼龙、陶瓷和可降解生物材料等,这是目前的3D打印技术望尘莫及的。


DeSimone说:「除了可以采用新材料以外,CLIP技术还能打印出强度更高、形状独特的物体,这是其他技术做不到的,比如根据病人个体情况量身定做的心脏支架。由于CLIP打印速度很快,只需要几分钟,而不是几小时或者几天,有可能再过几年,我们就能随时打印出个性化的冠状动脉支架、牙种植体或假肢,以满足医疗的需求。」


▲CLIP打印出埃菲尔铁塔


有人可能会问,CLIP和目前已有的光固化技术(SLA,stereolithography)有何不同?二者的不同点在于,SLA技术中,有一束紫外线激光在液态树脂中逐点扫描出每层的轮廓,而CLIP是将整个横截面投射在水槽底部。


▲SLA技术是一束紫外激光逐点扫描出每层的轮廓


那么,CLIP究竟有多快呢?据Carbon3D的工程师说,他们可以在6.5分钟内打印出一个直径2英寸(约5厘米)的几何球,如文章开头视频中演示的那样。而打印同样的几何球,SLA技术需要花11.5小时,另一种3D打印技术SLS(选择性激光烧结,selective laser sintering)需要花上3.5小时,FDM(熔融沉积式,Fused deposition modeling)需要花3小时。


▲几种3D打印技术的速度比较


目前,Carbon3D正在完善这项全新的技术,希望今年年底能推出商用的CLIP打印机。


本文来源:机器之心



瘢痕微创专家门诊:周五下午1:00-4:00,长海医院门诊2楼22区


欢迎关注[点阵激光瘢痕微创]官方微信:miniscar


美大夫
1、截图保存二维码,微信扫一扫该二维码
2、关注美大夫公众号
3、添加 为好友,与医生本人咨询沟通
推荐文章
查看更多